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A HIGH FREQUENCY MODEL OF CASCADE NOISE

Edmane Envia"

Acoustics Branch, NASA Lewis Research Center
Cleveland, Ohio, USA

ABSTRACT

Closed form asymptotic expressions for computing high frequency noise generated by
an annular cascade in an infinite duct containmg a uniform flow are presented. There are
two new elements in this work. First, file annular duct mode representation does not rely on

the often-used Bessel function expansion resulting in simpler expressions for both the radial

eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an

explicit approximate formula for the radial eigenvalues obviating the need for solutions of
the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are

represented in terms of exponentials eliminating the numerical problems associated with
generating the Bessei functions on a computer. The second new element is the construction
of an unsteady response model for an annular cascade. The new construction satisfies the

boundary conditions on both the cascade and duct walls simultaneously adding a new level
of realism to the noise calculations. Preliminary results which demonstrate the effectiveness

of the new elements are presented. A discussion of the utility of the asymptotic fornmlas for
calculating cascade discrete tone as well as broadband noise is also included.

INTRODUCTION

Prediction of fan noise continues to be an

integral part of the efforts aimed at analysis and
suppression of turbofan engine noise. To that end, a

number of schemes have been developed to calculate
the contribution of various fan-associated noise

sources. But, whether the goal is to predict rotor inlel
noise (e.g., Mani 119731), cascade self-noise (e.g.,

Glegg [1996]) or rotor-stator interaction noise (e.g.,
Envia et. al, 119961), all of these schemes are
predicated on computing the acoustic response of a
blade row to incident flow perturbations.

In strictly non-CFD based methods, which

continue to be the principal tools of fan noise

prediction, the blade row acoustic response is
computed using simplified versions of the cascade

geometry and/or the governing equations. At the
simplest end of the spectrmn, approximations in both
the geometry and goveming equations yield analytical
or semi-analytical expressions for the acoustic

response. Generally speaking, the approximations
involve replacing the cascade with zero thickness fiat

plates and iinearizing the governing equations about a
uniform base flow. In this class of methods the

acoustic response can be determined either directly by
solving the governing equations or indirectly through
the use of the annular duct Green's functions which

couple the unsteady surface pressure distribution on the
cascade to the duct acoustic modes.

However, even at that level of approximation,
exact solutions are still difficult to obtain, so further

simplifications are tnade. Some simplifications are
based on replacing the annular cascade by a rectilinear
one at some representative radius and computing the
acoustic response for the resulting system (e.g.,

Goidstein 11976]). In other simplifications, the annular
geometry is retained but the cascade unsteady pressure

distribution (henceforth, called the cascade unsteady
response) is computed at a number of spanwise 2D

strips and the resulting distribution assembled and
coupled to the duct acoustic modes (e.g., Ventres et. al

119821).

While in both cases useful information

regarding general trends can be obtained, it is highly
desirable to retain as much of the cascade and unsteady

response three-dimensionality as possible. Such 3D
models have been explored by, among others, Namba

[19771, Kobayashi 119781 and Schulten 119931, but
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these approaches generally require the use of
collocation techniques or numerical solutions of partial

differential equations.

In this paper, a closed form approximate
model of cascade noise is presented which takes into

account the annular geometry of the blade row
throughout the analysis. The noise field is computed

by coupling the cascade unsteady response to the duct
acoustic modes in file standard manner. However,

asymptotic methods have been employed to circumvent
the need for nmnerical solution of the governing

equations by tailoring the model to the high frequency
noise regime. Given the current interest in high-speed

fans, this high frequency specialization, far from being
a limitation, is in fact an asset since the numerically
based methods have inherent difficulties handling the

Ifigh frequency response regime.

In what follows, the development of two new
elements in modeling of annular cascade noise will be

presented. The first element involves a representation
of annular duct modes that is not predicated on the use
of the Bessel functions. The second new element

addresses the construction of an unsteady response to

incident flow perturbations (i.e., gusts) for an annular
cascade where the finite-span effects as well as the gust

three-dimensionality are taken into account. In each
case, intermediate results will be presented which show
the effectiveness of the new approximations. The two

elements are then combined to provide the desired high
frequency model of cascade noise. The paper is
concluded with a discussion of the utility of the new

model for predicting cascade tone and broadband
noise.

ANALYSIS

The cascade is modeled as an ensemble of

zero camber and thickness fiat plates enclosed in an
infinite hard-wall annular duct within which exits a

uniform and isentropic medium As shown in Figure 1.

two coordinate systems will be employed in this work.

The global _stem (x,r,O) is cylindrical polar and is

aligned with the axis of the duct with 0 measured

positive counterclockwise. The local system (_, r/, 0

is Cartesian and is aligned with the reference (i.e.,

zeroth) airfoil. With no loss of generality, we assume

that the 0 = 0 line and _" axes are coincident a_!

along the leading edge of the reference airfoil (see

Figure I). The relationship between the two systems is

given by

A-

r = r,

j. •

Figure I. Cascade geometry, and coordinates systems.

_:= xcosa, +rOsina,

r/= -x sin a, + rOcos a,

r--O"

1--0"

(l)

where a, is the stagger angle of the cascade. Eq. (1)

holds as long as 0 is small (i.e., near the reference
airfoil). The axial and radial coordinates are

normalized by the tip radius, as are the local

coordinates. _r = rn / rr is the hub-to-tip radius ratio

with rn and rr denoting tile hub and tip radii. In

what follows, it is most convenient to describe the duct

acoustic field in terms of the global coordinate system,
while the building block of the cascade unsteady

response is most easily derived in the local coordinate
system.

The representation of the duct acoustic field is

outlined first followed by the construction of the
cascade unsteady response model. In both instances.

we will take advantage of asymptotic methods to
simpli_¢ the analysis. The connection between the two
elemet ts is then established using tile Green's function
method.

NASA/TM-- 1998-208495 2



Annular Duct Mode Expansion leads to separate equations in x and r given by

For tile duct mode acoustic field calculations,

we assume the base flow to be axial. The propagation

of acoustic pressure waves in such a system is

governed by the convected wave equation which, in the
duct coordinates, takes the form

V:-ao 2 , p'=0 (2a)

V2 0 2 +l C3(r O) 1 0 2= ---- (2b)
g)+,: ao2

D o _ 8 0÷ U -- (2c)
Dt _ Ox

-_-- t_ct = 0 (2d)

p'(x,r,O,t) is the acoustic pressure, ao the nominal

speed of sound of the medium and U the base flow.

Using the normal mode expansion approach,

the most general form of p' with Imnnonic time

dependence is given by

p'(x,r,O.t)= £ _',.(x,r) e ifmO-°'t)

ffl - - ¢o

(3)

where to is the frequency and m the spinning (i.e.,

circumferential) mode order. Depending on whether
one is concerned with tone noise or broadband noise,

there will-be a sum or an integral over all frequencies
of interest. The form of pressure given by Eq. (3),

simplifies Eq. (2a) to

I a2 10(r 0)_ m2fl_" -_" + r o"gr[, tgr) ,2

¢_ • 27--,

+ 2ikM-_+l_ JPm =0

(4a)

k = _rr M = --, ,8 = (4b)
a o a o

Here k is the reduced frequency, and M is the Mach
number of Ihe mean flow. Introducing

,_.(x,r) = f_(x) g,,(r) (5)

f12 +2ikM +( k2 -x2) fm =0 (6)

m 2

[ a: + l d +,,_2--7-]g,,,j=0;g,
(7a)

dgmdr duct ----0 (7b)

The lerm x 2 in these equations is the separation

constant. We solve for the second equation first and

postpone the solution of the first one until later in the
analysis.

Since Eq. (7a) is the Bessel's Equation, it is
usually solved in terms of the Bessel Functions of the
First and Second kind of index m. The corresponding

boundary value problem (i.e., Eq. (7b)) then leads to a
transcendental equation for the eigenvalues of the

annular duct (i.e., the permissible values of x ). The

eigenvalues are generally obtained numerically by

solving the transcendental equation iteratively. But
here we pursue a different approach for computing

I fdr

The integrating factor e -I_S- = r -1/: for Eq.

(7a) suggests the following change of dependent

variable gin(r) = r -v2 _,,,,(r). Rewriting Eqs. (7a &

b) in terms of the new dependent variable yields

(sa)

m 2 1w(r): 2 ---v-+-- (8b)
r" 4r:

g =o (8c)

The distribution of the eigenvalues of the

Bessel's Equation is such that the smallest eigenvalue

in the sequence is always greater than the index (i.e.,

Min(r) > m ) with the oilier elements of the sequence

growing rapidly larger than m. Therefore, as long as

tr> 0 (i.e., rn _ 0), w(r) will vary slowly with • for

given _c and m. This suggests that the WKB method
(Olver I 19741) may provide a reasonable

NASA/TM-- 1998-208495 3



approximationto the solution of Eq. (8a) and its

eigenvalues. The accuracy of the approximation will,

of course, depend on the behavior of w(r), but as it

will be shown the proposed approximation is
surprisingly accurate, especially, for higher order

eigenvalues as long as a is not too close to zero.

The asymptotic formula for file eigenvalues is

derived in Appendix 1. The final result is

., or+ +or<l-or):(2,.2+3,2)
r,,,,, -" (9)

2or(l- or)

where x,,,,, is the non-dimensional eigenvalue and

n = O, 1, 2.... its "radial" index set corresponding to

each circumferential index m. The symbol ="

indicates that x,,,, is an approximation to the exact

eigenvalue.

Eq. (9) is a simple formula but a remarkably
accurate one as is shown in Figure 2. Here the exact

(open bars) and approximate (solid bars) radial
eigenvalues are plotted for two circumferential mode

orders m = 6 and m = 30 for a hub-to-tip radius ratio
of 0.5. The first 20 eigenvalues are shown in each

case. Maximum approximation error is around 15%
for low values of the radial index but as n increases

the error diminishes rapidly. Given that file exact

eigenvalues" must be determined numerically for each

connbination of m. n and or. the advantage of having

an explicit formula for computing the duct eigenvalues
accurately becomes apparent.

The corresponding eigenfunctions, also
derived in Appendix l, are given by the expression

16(x_r):

x _ e a¢''(_ .... ) -_ w'("cm,,'or) e2'C"('"'°)e -'v''('_-'')

(lOa)

4m 2 - 1
_,.(lc.r) = xr +- (lOb)

8t¢ r

at(it, or): 2or 9,'o (pc, o-) + i (10c)

The exact eigenvalues are solutions of the transcendental

equation J" (x,,,,or) }= (pc,,,,,) - J_, (x,,,,,) 1'= (x,,,,,or) = O.

IO0

80
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Figure2. Comparisons of exact and approximate radial
eigenvalue distributions for two circumferential
mode orders. For this calculation or = 0.5.

The prime in Eq. (10c) denotes differentiation with

respect to the radial coordinate r and the symbol _R
indical,:s the real part.

Eq. (10a) provides an efficient alternative to
the exact" annular duct eigenfunctions which generally

require recursive computation of the Bessel functions

of various order. In Figure 3, a comparison of the

exact and approximate eigenfunctions is shown. The
first four normalized radial eigenfunctions are plotted
for tht_ circumferential mode m = 6 at cr = 0.5.

Except for the lowest order approximate eigenfunction,
which .qlows nmrked difference from the exact one, the

rest arc consistently close to the exact eigenfunctions
with the agreement improving as n increases. The

fourth one, in particular, is virtually indistinguishable
from the exact eigenfunction. These results, and those

shown _n Figure 2, demonstrate that the formulas given
by Eqs. (9) and (10a) provide useful approximation that

*°

The exact radial eigenlhnctions are given by the expression

J;:(,__or)
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Figure 3. Comparisons of exact and approximate radial
eigenfunctions (normalized) for the circumferential
mode order m = 6 with o- = 0.5. Eigenfunctions

corresponding to the first four radial orders are
shown.

can be used in place of the exact eigenvalues and

eigenfunctions.

Eqs. (9) and (10a) together constitute the first
of two main results of this paper. A detailed discussion
of the behavior and anal)tic structure of these

approximate eigenvalues and eigenfunctions is
postponed to a future time.

With the solution of the radial eigenvalue

problem determined, the most general solution of Eq.

(7a) is given by

_o

#.(,)-- E c..q,,..(,)
,'1=0

(11)

where C,,,,, 's are acoustic mode amplitudes that will be

determined later.

Now, the solutions of Eq. (6) can be readily
written down as

f,, (x) = e/k_ x (12a)

kM__ 1 / k_ 2 (12b)

where the plus sign indicates downstream running
acoustic waves and the minus sign upstream running

ones. Combining the expressions for f,, and g,,,, the

general representation for the acoustic pressure field
inside the duct is given by

p'(x,r,O,t) = _ _ c.. _.(r) e_<*_+'°-'')
•"11: ¢o n I)

(13)

For a given geometry and operating condition,
only a finite number of terms in the double infinite

sums will constitute propagating waves. Waves (i.e.,

modes), for which k_ is complex, are cut-off and do

not contribute to the acoustic field.

Annular Cascade Unsteady Response Model

The complications introduced by the annular

geometry of the cascade generally require numerical
solution of the equations governing the unsteady

pressure distribution on the cascade. To avoid a
numerical treatment, the unsteady response will be
constructed in a manner similar to that developed by

Envia and Kerschen 119861 for the radiated noise from
a rectilinear cascade.

Taking advantage of the weak coupling

between the adjacent airfoils at high frequencies, these
authors envisaged the cascade noise field as a sum over
the individual airfoil fields with the blade-to-blade

periodicity enforced. Here we modify the procedure to
account for the annular geometry and deduce the

unsteady pressure distribution on the cascade from the
local acoustic field. The solution is of course

approximate, but as was shown in the above reference,

the approximation provides quite reasonable accuracy
at high frequencies.

The starting point for construction of the
cascade response is the single airfoil solution. This
solution is derived for the reference (i.e., zeroth) airfoil

using the Wiener-Hopf technique in terms of "leading

edge" and "trailing edge" responses that are combined
to produce the response of the airfoil to incident flow

perturbations. The details of the derivation, as well as
a discussion of some sample calculations, are given in

NASA/TM-- 1998-208495 5



Appendix2. Herewc present thc final results

cxprcssed in file duct coordinate systcm. Thc solution
is given by

at)

,ls--_ v 0 /=0

r_,, ,_, ir,(x,o) - , 0)ei_2( .... o)] (14a)x [_,jkx, r,v)e " +tt2tx.r,

zRj(x.,,o)
M 2

-7"¢ '"¢ (x i cosa, +r0sina,)
,0¢

(14b)

R) -- x) +(rO)', xj = x-(j-l)c (14c)

where c is the airfoil chord. The definitions for all the

variables appearing in these equations can be found in
Appendix 2. The triple sununation provides the

response over all possible gust modes that mighl exist
inside the annulus as discussed in the beginning of

Appendix 2. It should be emphasized that, at this point

in the analysis, pA is the unsteady pressure field in the

vicinity of the zeroth airfoil and not just on its surface
alone. After the cascade solution is constructed, the

final expressions will be evaluated on the surface of the
cascade.

Since the circumferential positions of any
airfoil in the cascade is related to the circumferential

position of the reference airfoil tlu'ough

Oq:O-q_, q= O, ±1, ±2,... (15)

where q_= 2tt / N ( N is the nmnber of airfoils in the

cascade), the acoustic response of any airfoil in the

cascade can be related to the response of the reference
airfoil. The required relationship can be established by

noting that. on a per mode basis, the form of the

incident gust on the q th airfoil expressed in the zeroth

airfoil coordinates, is relaled to the form of the gust on

the zeroth airfoil expressed in the q th airfoil coordinate

system through

ut_(x.r.O.t)q%,ffo,l = ut,.(x.r.Oq,t)o%,aoil e i_"

(16)

where we have taken advantage of the circunfferential

dependence of tile gust as given by Eq. (A2.1) in
Appendix 2. This suggests that an identical connection

must hold between the responses of other airfoils and
the response of the reference airfoil. That is to say,

p'q(x,r,O,t) = p_(x.r, Oq,t) e iqu¢ (17)

Adding up the contribution of all airfoils we find

_o

P'c(x'r'O't)= Z P'°(x'r'O'l't) elqU_ (18)

where p'_ is cascade response. The limits of the

summation are set to infinity to ensure that the

resulting solution and all of its derivatives are periodic
around tile annulus. Had we limited the sum to only
N terms (corresponding to N airfoils), only the

periodicity of the solution itself would have been

guaranteed. Furthermore, as it will shown later, the

infinite sum in Eq. (18) ensures thai all circumferential
modes that can exist in the duct are accommodated.

Taking advantage of the properties of the
Dirac delta function, Eq. (18) can be rewritten as

p;(x.-,o,t)=

q:-oO _ -o0

(19)

Interchanging the order of summation and integration
and using the Poisson Sum formula (see Career et. al
[1966] _ the sum in Eq. (19) can be converted to an

equiva ent stun (say, with index e ) having the form

ao

42_r_p L_

x f _p;( x,r.®,t) e-i(l_'2ts/c)_Od_
(20)

Given the complicated form of p_)(x,r,O,t)

(see Eq. (14a)), the integral in Eq. (20) cannot be
evalualed exactly, but it can be computed
asymplotically using the method of steepest descent in

the high frequency limit (i.e., for k >> 1). Substituting

for p[_ x.r,O,t) and grouping tenns together, Eq. (20)

can be _ewritlen in canonical fonn as

NASAfI'M-- ! 998-208495 6



p'_(x,r,O,t)= _Z It ei(U+2t"/')°
t=_m

(21 a)

where the phase functions q'j contain all the phase

terms that depend in the variable ® and the amplitude

terms Aj include everything else in Eq. (14a). The

phase functions are given by

%{o)= +(rO)-"
M 2

-g¢ "_ rOsina, - (_+ 2err/0,)® (22)

with xj = x- (j- l)c. The saddle points OAp (i.e.,

the roots of dWj / dO = '-F_ = 0 ) are given by

---¢-sina,M2 1 ]re + (g+2en/tp) xjP¢

I /'_¢ sina, + (/,t+2f_r/q_)
2"2- y¢ fie

(23)

Carrying out the remaining steps in the

analysis leads to the asymptotic approximation of the

integral I t . The final result is given by

[! _ 2_ e ix/4

)
_/ it t_p

A:(O2_p) eiV2(o2,,)

(24a)

/g _.

, ,,-¢ sin a, +l(p+ 2_tt/¢)v, =xj/ / p,
(24b)

i/ M_ sina, + l(/a+ 2err/_)r2 Z 2 _ y_ fl_

2
Z xj

(24c)

where W" is the second derivative of the phaseJ

function given in Eq. (22).

The waves implied by Eq. (24a) are cut-off
whenever the square roots in the expressions for

vj(oj,,) (i.e., Eq. (24b)) become imaginary. In

particular, consider the case for tone noise generated by
the interaction of mean wakes of a B-bladed rotor

with a V-vaned stator. For this situation the

circumferential structure of the gust implies that

g = _B where _a is an integer. If the stagger angle

a, were zero, the cut-off condition for the lowest

order spanwise mode (i.e., I = 0 ) would imply

oBD.r r
<_lvn+ evl

a0,o
(25)

where we have taken advantage of the following facts:

Z[t=o = k_M It = tar r l aofl,

ca = _ B[I ,

q_ = 27r/V

and £/ is the fan rotational speed.

If the cut-off condition is satisfied for the tip
radius, it will be satisfied for all other radii. Setting

r = 1 in Eq. (25) and re-arranging the resulting

equation, we arrive at the familiar Tyler-Sofrin cut-off
criterion (see Tyler and Sofrin I1962 I);

(26)

where M r = f2 rr is the tip Mach number of the rotor.

Modes for which the above inequality holds are cut-off
and do not contribute to the cascade response field.

For higher order spanwise modes and/or non-zero

stagger angles the cut-off condition is somewhat more
complicated.

NASA/TM-- ! 998-208495 7



Substituting for I t in Eq. (21a), the final

expression for unsteady pressure field in the vicinity of
the cascade is given by

FAx.r,o,t) =__
Se ix/4

_u- _a ¢-0 I-0 t- -_

GI (Olsp)e, l (reMcosa#p_).r,

+ :[tO,,p)e

JtlJ,,

k, l-o-J
(27)

The last step in obtaining the unsteady pressure

distribution on the cascade involves evaluating p_ on

the airfoil surface.

Eq. (27) is the second principal result of lifts
paper. It provides a closed form expression for
computing the asymptotic behavior of the unsteady

pressure distribution on an annular cascade in the high
frequency limit. The next step in the analysis involves

relating the cascade pressure distribution to the duct
acoustic modes.

The methodology of Green's function allows
for the desired connection to be established between

p" and the values of C,,,,, (in Eq. (13)). The

mathematical statement of this connection is given by
(see, for example, Meyer and Envia [ 1996])

C,,_: f f p'ci',.V(@_tr) ei(k_--"*"°))ds (28)

where i is the unit normal perpendicular to the surface

of the reference airfoil. The integration is carried out

over the surface of the reference airfoil. Once C,. 's

are computed for each propagating mode according to

Eq (28), the duct acoustic field given by Eq. (13) is
completely specified.

In a typical computation, a description of the

incident gust field inside the annulus will be developed

first. This will be done according to Eq. (A2.1) and

then converted to an equivalent description in the local
airfoil coordinate system as given by Eqs. (A2.2a

through A2.2c). The resulting modal expansion will
then be used as input to the cascade unsteady pressure
formula (i.e., Eq (27)). The result will be in turn

integrated according to Eq. (28) to provide the modal

pressure amplitudes C,,,'s. These will then be

inserted in the expansion given by Eq. (13) to provide a

description of the acoustic field inside the duct setup by
the interaction of the incident gust with the annular
cascade.

Eq. (13) gives a description of the acoustic

field in terms of duct modal pressure. However, such
quantities as acoustic power can be easily calculated

using the applicable formulas from Eq. (l 3).

In principle, the steps outlined above will
apply whether one is interested in tone noise or in

broadband noise. But, in practice, some reformulation
of the formulas will be required for broadband noise

calculations. In particular, since the description of the
turbulent gust can only be given in terms of spatial

correlations, the formulas derived in this paper must be
recast in terms of expected values of acoustic power
instead of acoustic pressure. The methodology,

however, will remain exactly the same. In an

upcoming paper, detailed computations using the
formulas derived here will be presented.

CONCLUSIONS

In sunnnary, closed fonn asymptotic
expressions for computing the noise field of an annular

cascade inside a duct containing a uniform flow have
been developed. By tailoring the analysis to the high

freque_cy regime, numerical treatment of the equations
involved has been avoided altogether.

There are two principal new results in this
paper. The first is an alternative description of the duct

acoustic modes that does not rely on the often-used

Bessel function expansion. This results in simpler
expressions for both the radial eigenvalues and

eigenfinctions of the duct. In particular, the new
represxntation provides an explicit approximate
formuli for the radial eigenvalues obviating the need
for selutions of the transcendental annular duct

eigenvalue equation. Also, file radial eigenfimctlons
are represented in terms of exponentials eliminating the
numerical problems associated with generating the

Bessel functions on a computer.

The second new element is the construction of

an unsteady response model for an annular cascade

NASA/TM-- 1998-208495 8



using the single airfoil solution as the building block.
The new construction allows for file boundary
conditions on both the cascade and duct walls to be

satisfied simultaneously adding a new level of realism

to the noise calculations. Preliminary results were
presented which demonstrate the utility and
effectiveness of the new elements.

Cascade discrete tone and broadband noise

predictions using the new formulas will be presented in
a future paper along with comparisons with results
from simpler 2D-strip based models and rectilinear
cascade models.

APPENDIX !

Asymptotic Solution of the
Radial Eigenvalue Problem

The WKB approximate solution of Eq. (8a) is

given by

_.,(r)- _c(r) ( C_eiJ '_(') a" +C:e-ij'(')d" t (Al.la )

subject to

d 1)_ =0
=

(Al.lb)

where C 1 and C,_ are arbitrary constants and the

symbol - denotes the approximate nature of the
solution. The integration indicated in the phase of the

exponential terms can be carried out explicitly,

yielding

t"

J w(r)dr= 21--_]4(tcr) _"-4m: +l
_(x.r) =

log l+4(-/___2_"+,
1-4m2 )

Assuming fl_at x >> i, Eq. (AI.2) can be simplified by

expanding it at tirol limit. The simplified phase

function to O(x-2) is given by

4m" - 1
¥o(x,r) = tcr _ (AI.3)

8K'r

where the subscript a indicates thai Eq. (AI.3) is an

approximation to Eq. (AI.2). The constant term in the

the O(tc °) term) is ignored since itexpansion (i.e.,

only contributes a multiplicalive constant to the

expression for _',, and therefore does not alter the

subsequent results.

Substituting _a for ¥ in Eq. (Al.la) and

noting that [w(r)] i/.. = x_,/2 + O(x'-2). the bounda-,T

condition at r = o. determines C__ in terms of C 1 via

m(x, o.) e:Zi¢,(x,_,)
c2 : G m'(x,a)

(AI.4a)

re(x. o.) = 2o ¢t_,(g, o.) + i (A 1.4b)

where the prime denotes the derivative with respect to
r and the asterisk a complex conjugate quantity.

Enforcing the boundary, condition at r=l and

substituting for C2 from Eqs. (A1.4a & b) yields

eZi[,,_,. 1) _,,(_.,,I] = m'(x, i) m(K,o.)

,,,(,,-,l) ,.'(,,-,o.)
(AI.5)

which is the equation that determines the non-

dimensional eigenvalue x. In its present form, Eq.
(AI.5) is transcendental in x and not amenable to an

exact analytical solution. But if we take the logarithm
of both sides and expand the resulting equation to

O(x-:). consistent with the level of approximation

introduced in obtaining _ga, we find

2[Ip'°(K', l)--_a(g',o.)] : (I--O.) + 2nn" (AI.6)
K"

where n=0, 1, 2..... In view of Eq. (AI.3), Eq.

(AI.6) is quadratic in x and can be readily solved to
yield

ntro. + ,_/(n n'o.) 2 + o.(I- o.)_-(2m 2 + 3/2)

"- = 2o.(l-o.)
(AI.7)
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whereonly the positive root has been retained since
only the positive eigenvalues are relevant here. Note

that, the pair of indices m. n denotes a doubly infinite

set. Eq. (AI.7) is a remarkably simple formula for the
approximate eigenvalues of the annulus. The accuracy

of this formula is investigated in the analysis section of
this paper.

Inserting the expressions for C 2 and g,,,, in

Eq. (AI. la), we find the most general representation of

_,,, (r) as

.=o p 16(x"_r) 2 C,,,_

× _l eiC"(x="r)+ ar,(tc_n,cr)e2iW'(_"°)e -i;''(_''r)

(AI.8)

where 91 denotes the real part of the quantity and C,,,,

is the constant C 1 renamed. To improve the accuracy

of the eigenfunction approximation the next order term

in the expansion of [w(r)l -''2 has also been kept

resulting in the term in front of C,,,,.

APPENDIX 2

Asymptotic Solution Of
The Single Airfoil Unsteady Pressure Distribution

It is mathematically more convenient to solve
this problem in terms of the acoustic velocity potential

(denoted here by _ ) instead of the pressure. Once the

solution is obtained, the pressure can be calculated
from ¢ via the linearized momentum equation, i.e.,

p' = -p D°¢t where p is the ambient density.
Dt

As was indicated earlier, the unsteady
pressure response will be formulated and solved in the

local coordinate system (_,t/,g'). It is, therefore,

necessary to represent the incident gust in these
coordinates. The most general representation, in the

global coordinate system, of the relevant component of
the convected gust is given by

2±.,(x.,.o,t)-- o,1
Ir--_ v-:-O

(A2.l)

where _,,, 's are the radial eigenfunctions of the duct

(see Eq. (10a)). The axial wavenumber is given by

k x = k/M owing to the requirement that the gust be

convected by the mean flow (Recall that k = ear r la o ).

A_,,, "sdenote the gust modal amplitudes.

Along the leading edge of the reference airfoil

O is zero. Setting 0 = 0 in Eq. (A2. I), expressing the

resulting equation in the local coordinate system, and

expanding the g" dependence in a Cosine Fourier

series yields

/t.-co v=0 1:0

× cos(/_r() (A2.2a)

g ¢ = k_ cos a,, 7",7= -k_ sin a,. (A2.2b)

I )c] <.c)a#a = A._ cr + 1 - o" cos ! d(

qlt0

(A2.2c)

Eq. (A2.2a) provides the general modal representation

of the incident gust in the local coordinate system

In view of Eqs. (A2.2a) through (A2.2c), the
mathematical statement of the unsteady response of a

single airfoil subject to a single incident gust mode is
given by

( V2 -ao2 _)q_(_,rl,(,t) =0
(A2.3a)

a_r =-ei(r_¢-_t)cos(ltrO on 0_<_:_<c (A2.3b)
rl:,

, ;;:0'
P ,r0 = 0 on _> c (A2.3c)

where c is the airfoil chord. The transverse wave

nmnber 7",7 does not enter these equations owing to the

form cf the boundary condition in Eq. (A2.3b). The

convective derivative is given by DO =----° +V¢
a

Ot Ot O_

where V¢ = Ucosa, is the speed of the umform base

NASA/TM-- 1998-208495 10



flow,which now is aligned with the airfoil chord. The

last equation enforces the continuity of the acoustic
pressure downstream of the trailing edge. These

equations are supplemented by the Sommerfeld
radiation condition at infinity and the continui_:' of

derivatives of # offthe airfoil.

The exact solution of Eq. (A2.3a), subject to

all of the specified boundaD' conditions, can not be
obtained in closed form. But, it has long been

established that the solution may be developed as a

convergent series ¢_= ¢1 + _2 +"" in which each term

is a solution of Eq (A2.3a) but with one of the two
edges moved off to infinity. As a result, for each term

in this sequence, some of the boundary conditions can
be ignored leading to a simpler problem which can be
solved in closed form. Landahl [1958] has shown that

file series converges for all frequencies with the rote of

convergence increasing rapidly as the frequency is
increased. It will be shown later that, for our purposes,

the first two terms in the sequence provide sufficient

accuracy.

The Leading Edge Solution

The leading edge solution #1 must satisfy Eq.

(A2.3a) subject to

Otkl = -ei(r_-°")cos(Drdj) on 0 _<_ < oo (A2.4)

Or/ ,v,

The introduction of the following change of variables

= ,'[-,,t":'at) ,' o,]cos{o¢) (A2.5a)

_:' =--_" fl'_ = W- M_', M_ - --
fig a0

(A2.5b)

(A2.6a)

simplifies Eqs. (A2.3a) and (A2.4) to

a" a_- 2 )#l = 0

0_1.__o : -ei(r(P¢)¢' on 0_< _' < oo
(A2.6b)

(A2.6c)

A Fourier transform in ¢' reduces Eqs.

(A2.6a) to an ODE whose general solution is given by

_, = sgn(r/) C1(2)e _/"_'-z2i'_ (A2.7a)

d_' ,l:o - / Y_ (A2,7b)

£_

where 2 is the Fourier transform variable, _ the

transform of _ and Eq. (A2.7b) the transform of Eq.

(A2.6b). The branch cuts of the square root in Eq.

(A2.7a) are chosen so that the real pan of the root is

always pesitive. The unknown constant C 1(2) can be

expressed in terms of known functions by substituting
£.

for _ in Eq. (A2.7b) and taking advantage of the

requirement that the acoustic velocity be continuous
everywhere. The resulting equation can then be easily

solved through the use of the Wiener-Hopf technique
(see Noble [1958]). The final expression is given by

i
C, (2) = (A2.8)

Substituting for C I (2) in Eq. (A2.7a) and applying an

inverse Fourier transform to the resulting expression

yields the solution for _. Reverting to the original

dependent variable #_ and computing the acoustic

pressure (i.e., p_ = _p_D_.__._ ) gives
/)l

p;(¢',r/,¢.t ): -ip cos(t.¢)
2_rfl¢ T/-_---+ X

×e j_,_ _

d2 (A2.9)

The pole in Eq. (A2.8) does not appear in the
expression for pressure since it represents a solenoidal

(i.e., pressure-free) velocity. The integral in Eq (A2.9)
can be evaluated explicitly in terms of elementary
functions. The development is straightforward and,

therefore, only the final answer will be given here. The
solution is

NASA/TM-- 1998-208495 I 1



p V sgIl(r]) e ix/4 O'
t_'(¢'.,7,¢,0 = ,----------- COS--

,, e,Ex,r_,_.,,_(,,,,,,p,)_."]cos(t,_c) (A2.,0a)

o' = tan _ r/ (A2.10b)

Eq. (A2.10a) gives the pressure field

associated with file leading edge everywhere. Note that
the pressure has a square root singularity at the leading
edge and decays algebraically away from it. The

airfoil chord, e, does not appear in the leading edge

solution since the trailing edge was moved off to the
downstream infinity. The pressure distribution on the

airfoil (i.e., for o' = 0 ) is given by

_' (¢'.o.¢,t)

_-_ p v e'"' ;{[z-(,,,.,,:,,,,)]_.-.,t
cos(lag") (A2.1 I)

The plus sign indicates the pressure on the upper
surface and the minus sign the pressure on the lower
surface. Since the leading edge solution cannot satisfy

the Kutta condition at the trailing edge (i.e., p_ is not

continuous there), the trailing-edge solution must be

added to p; to rectifi,' this shortcoming

The Trailing Edge Solution

Now we let the leading edge move off to the

upstream infinity and place the origin on the trailing

edge. The new chordwise coordinate _ is simply

= _-c. The trailing edge solution _2 musl also

satisfy Eq. (A2.3a), but the appropriate boundary,
conditions are now given by

o¢: --o on _0
¢9r/ ,7=,

A2.12a)

on(p_ - = 0 _>0P
r/-O

(A2.12b)

where p_ in Eq. (A2.12b) is the leading edge solution

(i.e., Eq. (A2.11)) expressed in the shifted chordwise

coordinate _.

Following the same procedure that was

outlined for the leading edge solution, first a reduced
potentml is introduced,

_ =_=;[ ,,l*,,',_,)_'-"]cosW_¢) (A2.13)

and then a Fourier transform in "_' (i.e., _' = _ ///¢ ) is

applied allowing the formal solution for #2 (the

Fourier transform of _2 ) to be found. The result is

_2 = sgn(r/) C2(2)e v_l'_ (A2.14a)

subject to the transformed version ofEq. (A2.12b):

i e i{[z-(r'M''/'8')]_'+_'/4}

_r /7¢ + z

"x I_/-0'

us) l_-0
:0 on _>_0 (A2.14b)

where the terms on the left-hand side are the Fourier

transforans of the acoustic pressures associated with #j

and _ respectively, and c'= c / fie.

The integral in Eq. (A2.14b) can be evaluated
explicitly in terms of rite Fresno Integrals. But, since

we are only interested in the pressure distribution

upstream of the trailing edge, it suffices to determine
the behavior of the integral near rite trailing edge (i.e.,

for _'= 0). Expanding the denominator of the

integrald and integrating term by term yields the

power ,_eries

® ei_z)_' d'_'- i 1

_ _(,_ +z)' 2_.,/7(,_+z) _

+o((_+x)_) <A2.I_)

of wh:ch only the leading term is kept in the

subseql_ent analysis. This approximation simplifies the
algebra significantly while still guaranteeing tlmt the
Kutta condition is satisfied at the trailing edge.

NASA/TM-- 1998-208495 12



In a slightly more complicated Wiener-Hopf

analysis, the unknown constant C2(I ) in Eq. (A2.14a)

is found to be

c2(a)=-

(A2.16)

With C2(2 ) known, Eq. (A2.14a) can be formally

inverted. Switching back to the original dependent

variable #2 and computing the acoustic pressure we

find

p_(7,, rl,(,t)_ p V sgn(r/)_/'Z- e iilx r¢(U,',/_,)le',ix/4

& 2_ c' r_ +z

× d[-''(_''2_p'I_'-°']cos(b_O _ (4+z)a_

(A2.17)

The above integral can be evaluated explicitly. After a

fair amount of algebra, the final result, expressed in the

leading edge coordinates (_:', q, (), is given by

p_ (¢', tl,(.t)

p Vsgn(r/)e i't'4 ei{[z-(r,U,2/&)]_, "-''} cos(/_rO

: _ ,/r, +&z

x I_¢, 2e-iX/4

(A2.18a)

{_ if _'-c'_<Og¢' = if _' - c' > 0
(A2.18b)

• 2
where F(z) = e '_ da is the Fresnel Integral. Note

that, unlike the leading edge solution, the trailing edge
solution is not singular.

Evaluating p_ on the airfoil (i.e., r/:O)and

combining it with Eq. (A2.11), yields the two-term

representation of the unsteady pressure distribution on
the airfoil. The result is

r;_(_',o,_,t) =

¥ pVei'r/4 e i{[x (r'M'=//_¢)]¢"a't} COS(la'_")

,/r,+aa

{ I 2e-ixm )}x C _ F(42Z(c'-_' ) (A2.19)

The combined solution satisfies the Kutta condition at

the trailing edge (i.e., at _:' = c' ) since

F(O) = _'_e ix/a / 2.

In Figure 4 magnitude of the unsteady surface
pressure as predicted by Eq. (A2.19) is plotted for

typical (high) reduced frequency and Mach number

values. The corresponding plots for p{_(_',O,(,t) and

p_, (_:',O.4",t) are also shown for comparison. For this

calculation the gust is assumed to be uniform along the

span. Therefore, Figure 4 effectively shows the
chordwise pressure distribution.

1.5

0.0

....... PI'

.... P2'

p'

03 0.5 08 1,0

Figure 4. Typical chordwise unsteady pressure distribution

on a single airfoil, p{ and p_ are leading edge

and trailing edge solutions, and p' the combined

solutio,,. (r:,r_):(lO,O)and .,%=0.5 for

this calculation.
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Figure 5. Predicted real and imaginary parts of the 3D

unsteady pressure distribution on a single airfoil for

a gust with radial structure. The gust has the form

Ug = eDt,2(r ) e ire¢ , with y¢ = 22 and M, = 0.5

Note that, p_ 's primary contribution is in the

vicinity of the trailing edge where it enforces the Kutta
condition by canceling out the leading edge
contribution there. Everywhere else it is only a small
correction to the leading edge solution. The third term
in Landald's series will be correspondingly smaller in
comparison with the leading edge solution. At high
frequencies, therefore, the additional complexity
incurred by adding the third term is hardly justified for
a very small improvement in the accuracy of the
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Figure 6. Predicted real and imaginary parts of the unstody

pressure distribution for a single airfoil using 21)-

strip approximation. The gust parameters are the

same as those in Figure 5.

solution. Hence, we shall tnmcate the series at this
point :rod use the two-term representation in the
subseqaent analysis.

In Figure 5 the predicted real and inmginary
parts oi"the unsteady pressure distribution for a single
airfoil as given by Eq. (A2.19)) are shown for a more

realisti,; gust distribution given by ug = t_62(r ) e ir*_

with y,_=22, tr=0.5 and M_=03. The radial

structure of the gust means that there will be a
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spectrum of spanwise wavenumbers as dictated by Eq.
(A2.2a) and their associated spanwise amplitudes as

given by Eq. (A2.2c). Only the first five terms in that
series were taken into account for this calculation since

the higher order terms result in cut-off waves (i.e., 2',

given by Eq. (A2.6c), is complex for 1>5). The
corresponding amplitudes of the spanwisc modes are

given by (0.067, 0.127, 0.375, -0.028, -0.004). For

the sake of comparison the corresponding 2D-strip

approximation to the unsteady pressure distribution is

plotted in Figure 6. For this calculation, the variation
of the gust amplitude along the span was taken into
account but not its spanwise wavenumber spectrum.
While overall structure of the 3D and 2D-strip

distributions look similar, they exhibit differences in
their detail. A discussion of the importance of these
differences and their effect on file noise fields is

postponed to a later paper.

In order to utilize the formulas developed in

this appendix in the analysis outlined in the report, it is
necessary to express them in the duct coordinates.
After some simplification and grouping of terms, the

final expressions are given by

p,',,/,,..,o.,)-- a..a, Ix...o) .
/t=--_ w=O I 0

× ei[rj( .... e) _,t] (A2.20a)

rj(x,r,O) = zRj(x,r,O)

M 2
-g_ '"_ (xcosas

P¢
+rOsina,) (A2.20b)

r /

a,_¢,o V sgn[sint ,9- % )j e
ix/4

- (A2.20c)

cos(S/2)
a,(x...o)=-

(A2.20d)

M 2

2e L P( _1
=

x F[x(R: +(x-c)cosa, +rgsina,)/,8,] (A2.20e)

Rj = xj2 + (r0)', x; = x- (j - l)c (A.20f)

,9 = tan I(-xsina, +rOcosa, 1k xcosa, +rOsina,
(A.20g)

where j = 1 gives the leading edge solution and j = 2

the trailing edge solution. Eq. (A2.20a) represent the
unsteady pressure field in the vicinity of a single airfoil

bound by the walls of the duct with the index "'0" on

p_j indicating flint the solution applies to the zeroth

airfoil.
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